Чтиво, лайфхак
Одним из принципов специальной теории относительности Эйнштейна является следующий: ничто не может двигаться быстрее, чем свет в вакууме. Скорость света считается универсальным ограничением скорости всего, и это широко принято научным сообществом. Однако наука такая штука, что если кто-то установил твердое правило, всегда найдется кто-то другой, кто попытается опровергнуть его или хотя бы найти лазейку. Скорость света не стала исключением.
Ответа на вопрос, может ли значимая информация двигаться быстрее, чем свет, пока нет. Сейчас мы можем переместить лишь несколько частиц, и это хорошо, поскольку в дальнейшем может привести нас к желанной цели. На практике, вам нужно передать организованные биты информации, которые хоть что-то означают и не повреждены, на другую машину, которая сможет их прочитать. В противном случае самая быстрая в мире передача данных не будет стоить и ломаного гроша. Но можете быть уверены, если ученые все же превысят порог скорости света, ваш Интернет заработает быстрее. Намного быстрее, чем начнутся межзвездные перелеты.
Оптоволоконный кабель, конечно, гораздо быстрее передает информацию, чем медный провод, и не так подвержен воздействию электромагнитных помех. Волокно позволяет достичь скорости передачи в несколько сотен Гб/с или даже Тб/с. Домашнее интернет-соединение не демонстрирует такой скорости хотя бы потому, что проводка везде разная. Даже если у вас стоит оптоволокно, возможно, на одном из участков передачи данных есть медный кусок. Но даже с таким оптоволокном информация будет идти к вам со скоростью 50-100 Мб/c, что получше, чем 1-6 Мб/с у DSL-линий. Скорость соединения зависит также от местоположения, провайдера и вашего тарифного плана.
Космические путешествия — это всего лишь один из возможных способов применения сверхсветовой скорости. Нам бы, например, очень хотелось заглянуть на планету Gliese 581g и посмотреть, как там развивается местная жизнь (если она существует). Однако звезда Gliese находится в 20 световых годах от нас, а значит даже со скоростью света лететь до нее 20 лет.
В настоящее время большая часть данных проходит через медный провод или оптоволоконный кабель. Даже когда мы отправляем информацию с телефона посредством радиоволны, которая движется со скоростью света, она все равно в какой-то момент проходит через провод. Два наиболее распространенных типа медного провода для передачи информации на длинную дистанцию — это витая пара и коаксиальный кабель. Коаксиальный кабель быстрее из этих двух вариантов. Но оптоволокно быстрее их всех. В то время, как медный провод передает данные в форме электрических сигналов, оптоволоконный кабель движет информацию в виде световых импульсов.
Очень важно примечание «в вакууме», о котором мы говорили в самом начале. Свет движется по оптоволокну не так быстро, как в вакууме. Проходя через любую известную нам среду, свет движется значительно медленнее, чем в «идеальных» условиях, о которых говорит константа. Воздух не особо мешает свету, но стекло — существенно. Показатель преломления для среды у света это значение скорости света в вакууме, деленное на скорость света в среде. Для стекла этот показатель равен 1,5, поэтому если вы поделите скорость света (300 000 км/с примерно) на 1,5, то получите 200 000 км/c — приблизительная скорость света, проходящего через стекло. Некоторое оптоволокно сделано из пластика, у которого еще больший показатель преломления света, а значит и скорость меньше.
Ученые работают над созданием системы передачи данных по воздуху. Представьте себе Wi-Fi-лампочки или Wi-Fi-напыление, о котором мы когда-то писали, или вообще лазерные лучи от здания к зданию. Но все равно свет может двигаться через воздух со скоростью, близкой к скорости света в вакууме, но не больше. Как обойти это ограничение?
Одной из причин уменьшения скорости является двойственная природа света. Он обладает признаками как частицы, так и волны. Да, свет состоит из фотонов, но они не двигаются по прямой линии, проходя через кабель. И поскольку фотоны сталкиваются с молекулами материала, они движутся в разных направлениях. Преломление света и поглощение среды, в конечном итоге, приводит к потере энергии и данных. Именно потому сигнал не может двигаться бесконечно, и его нужно постоянно усиливать для передачи на длинную дистанцию. Стоит отметить, что замедление света — это лишь малая толика плохих новостей. В оптоволоконный кабель иногда добавляются примеси, которые контролируют скорость света и позволяют транслировать сигнал эффективнее.
Другой вариант сверхсветовой скорости передачи — это квантовая телепортация, один из парадоксов квантовой механики, который основан на запутанных парах: две частицы, запутанные друг с другом, будут обладать одними и теми же характеристиками, вне зависимости от того, как далеко вы разведете их. Также требуется третья частица, которая будет содержать данные, которые вам нужно передать. С помощью лазера можно телепортировать, в буквальном смысле, одну из частиц куда угодно. Это не похоже на передачу фотона, скорее на замену одного фотона копией оригинала. Этот фотон можно сравнить с третьей частицей на предмет нахождения соответствий или различий, а эта информация уже может быть использована для сравнения двух частиц. Похоже на моментальную передачу данных, но не совсем. Лазерный луч может двигаться только со скоростью света. Однако его можно использовать для передачи зашифрованных данных на спутник, а также для создания квантовых компьютеров, если мы-таки до них доберемся. Такая технология зашла куда дальше, чем любые другие попытки передать информацию быстрее скорости света. На сегодняшний день она работает только в ограниченных пределах, а ученые постоянно работают над увеличением дистанции телепорта.
Есть и другие вещи, которые вызывают задержки сигнала (так называемый delay — «дилэй»), когда вы пытаетесь зайти на страничку в Сети или играете в онлайн-игру. Ваш компьютер и сервер, который хранит данные, сообщаются, чтобы данные были синхронизированы и передавались эффективно, и именно это вызывает задержки. Также важна дистанция, которую проходят данные, а в некоторых местах могут быть «узкие проходы», которые задержат их еще больше. Система работает настолько быстро, насколько быстро работает самый медленный ее компонент.
Свет в вакууме движется со скоростью примерно 299 792 км/с. В сентябре 2011 года физики, работающие на OPERA (Oscillation Project with Emulsion-tRacking Apparatus, эксперимент по изучению нейтринных осцилляций), вызвали настоящий переполох в научном сообществе, когда объявили, что эксперимент показал, что субатомные частицы под названием нейтрино прошли путь от CERN до итальянской Национальной лаборатории Гран Сассо на 60 наносекунд быстрее, чем луч света. Мозги ученых закипели, выдумывая разнообразные теории того, как это вообще возможно. Однако все свелось к ошибке: один из кабелей был потерян, и все результаты были опровергнуты. Переписывать теорию Эйнштейна не пришлось.
Ученые из Национального института стандартов и технологий (NIST) утверждают, что смогли передать квантовую информацию со сверхсветовой скоростью, благодаря так называемому четырехволновому смешению, которое, по сути, является проявлением одной из форм интерференции в оптоволокне. Эксперимент заключается в передаче короткого 200-наносекундного импульса сквозь нагретый рубидиевый пар и одновременную передачу второго пучка лучей на другой частоте, который должен усилить первый импульс. Фотоны из обоих лучей взаимодействуют с паром и рождают третий луч. Как показывают результаты, третий луч движется быстрее скорости света в вакууме. Примерно на 50-90 наносекунд быстрее. Ученые утверждают, что скорость импульса можно калибровать путем изменения вводных параметров.
Другие исследователи пытаются обойти правила, а не нарушить их. К примеру, идея гибкого пространства-времени имеет все шансы на то, чтобы сделать возможным путешествие в космическом пространстве быстрее скорости света. Суть в том, что пространство-время будет сжиматься перед кораблем и расширяться позади него, в то время как сам корабль будет оставаться неподвижным в варп-пузыре. Эту идею впервые сформулировал мексиканский физик-теоретик Мигель Алькубьерре в 1994 году, однако ему потребовалось огромное количество негативной энергии (во вселенских масштабах), чтобы эксперимент стал возможным. Позже количество энергии сократилось до размеров планеты, а впоследствии и вовсе до размеров зонда. Математически теория построена на законах относительности, поэтому теоретически эксперимент не нарушает правил. Однако технологии пока не позволяют реализовать такой проект. Что не мешает Гарольду Уайту из NASA разрабатывать собственный варп-двигатель.
Некоторые ученые хотят передавать данные быстрее скорости света. Возможно ли это? Давайте посмотрим.
Источник: http://restbase.ru